- 相關(guān)推薦
考研導(dǎo)數(shù)的重難點(diǎn)
導(dǎo)數(shù)是每年考研數(shù)學(xué)必考知識點(diǎn),其中導(dǎo)數(shù)定義的理解和應(yīng)用是難點(diǎn)、重點(diǎn)。現(xiàn)分別從涉及的知識點(diǎn)、考查方式、方法選擇、真題鏈接等四個方面進(jìn)行分析。下面是小編為大家收集的考研導(dǎo)數(shù)的重難點(diǎn),僅供參考,希望能夠幫助到大家。
一、涉及的知識點(diǎn)及考查形式
可涉及導(dǎo)數(shù)的知識點(diǎn)有,導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義、物理意義(數(shù)一、數(shù)二)、經(jīng)濟(jì)意義(數(shù)三),函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,平面曲線的切線、法線,倒數(shù)和微分的四則運(yùn)算,基本初等函數(shù)的導(dǎo)數(shù),復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法,高階導(dǎo)數(shù),一階微分形式不變性。
導(dǎo)數(shù)定義一般以客觀題(選擇、填空題)形式考查,可以直接出題,也可以間接考查。如導(dǎo)數(shù)定義,判斷分段函數(shù)的可導(dǎo)性,已知可導(dǎo)求極限,單側(cè)導(dǎo)數(shù),求某點(diǎn)的導(dǎo)數(shù),導(dǎo)數(shù)定義及極限保號性,討論曲線性態(tài)等。
二、方法選擇、真題鏈接
當(dāng)題目中提到某點(diǎn)可導(dǎo)時,或用求導(dǎo)公式不好求某點(diǎn)導(dǎo)數(shù)時,要聯(lián)想到導(dǎo)數(shù)的定義。
導(dǎo)數(shù)的三種定義式:
三、小結(jié)
導(dǎo)數(shù)中定義式自變量趨近于零,隱含了自變量從左邊趨近于零和從右邊趨近于零,這是在平時復(fù)習(xí)時容易漏掉的要點(diǎn),尤其是在判斷可導(dǎo)性時容易落下的。導(dǎo)數(shù)定義首先要從可導(dǎo)的充分必要條件和等價定義兩方面進(jìn)行理解。
然后知識點(diǎn)的理解一定要結(jié)合一定量的習(xí)題才能真正掌握知識點(diǎn),并應(yīng)用于考研。
拓展:有關(guān)導(dǎo)數(shù)知識點(diǎn)
一、求導(dǎo)數(shù)的方法
(1)基本求導(dǎo)公式
(2)導(dǎo)數(shù)的四則運(yùn)算
(3)復(fù)合函數(shù)的導(dǎo)數(shù)
設(shè)在點(diǎn)x處可導(dǎo),y=在點(diǎn)處可導(dǎo),則復(fù)合函數(shù)在點(diǎn)x處可導(dǎo),且即
二、關(guān)于極限
1.數(shù)列的極限:
粗略地說,就是當(dāng)數(shù)列的項(xiàng)n無限增大時,數(shù)列的項(xiàng)無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:
2.函數(shù)的極限:
當(dāng)自變量x無限趨近于常數(shù)時,如果函數(shù)無限趨近于一個常數(shù),就說當(dāng)x趨近于時,函數(shù)的極限是,記作
三、導(dǎo)數(shù)的概念
1、在處的導(dǎo)數(shù).
2、在的導(dǎo)數(shù).
3.函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義:
函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,
即k=,相應(yīng)的切線方程是
注:函數(shù)的導(dǎo)函數(shù)在時的函數(shù)值,就是在處的導(dǎo)數(shù)。
例、若=2,則=()A-1B-2C1D
四、導(dǎo)數(shù)的綜合運(yùn)用
(一)曲線的切線
函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)處的切線的斜率.由此,可以利用導(dǎo)數(shù)求曲線的切線方程.具體求法分兩步:
(1)求出函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)處的切線的斜率k=;
(2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為_。
第一、求函數(shù)定義域題忽視細(xì)節(jié)函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,考生想要在考場上準(zhǔn)確求出定義域,就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。在求一般函數(shù)定義域時,要注意以下幾點(diǎn):分母不為0;偶次被開放式非負(fù);真數(shù)大于0以及0的0次冪無意義。函數(shù)的定義域是非空的數(shù)集,在解答函數(shù)定義域類的題時千萬別忘了這一點(diǎn)。復(fù)合函數(shù)要注意外層函數(shù)的定義域由內(nèi)層函數(shù)的值域決定。
第二、帶絕對值的函數(shù)單調(diào)性判斷錯誤帶絕對值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),判斷分段函數(shù)的單調(diào)性有兩種方法:第一,在各個段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,然后對各個段上的單調(diào)區(qū)間進(jìn)行整合;第二,畫出這個分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)能夠進(jìn)行直觀的判斷。函數(shù)題離不開函數(shù)圖象,而函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),考生在解答函數(shù)題時,要第一時間在腦海中畫出函數(shù)圖象,從圖象上分析問題,解決問題。對于函數(shù)不同的單調(diào)遞增(減)區(qū)間,千萬記住,不要使用并集,指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
第三、求函數(shù)奇偶性的常見錯誤求函數(shù)奇偶性類的題最常見的錯誤有求錯函數(shù)定義域或忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當(dāng)?shù)鹊取E袛嗪瘮?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷。在用定義進(jìn)行判斷時,要注意自變量在定義域區(qū)間內(nèi)的任意性。
第四、抽象函數(shù)推理不嚴(yán)謹(jǐn)很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計(jì)的,在解答此類問題時,考生可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)。多用特殊賦值法,通過特殊賦可以找到函數(shù)的不變性質(zhì),這往往是問題的突破口。抽象函數(shù)性質(zhì)的證明屬于代數(shù)推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴(yán)謹(jǐn)性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。
第五、函數(shù)零點(diǎn)定理使用不當(dāng)若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)<>
第六、混淆兩類切線曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個點(diǎn)的切線是指過這個點(diǎn)的曲線的所有切線,這個點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個點(diǎn)的切線可能不止一條。因此,考生在求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。
第七、混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系一個函數(shù)在某個區(qū)間上是增函數(shù)的這類題型,如果考生認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,很容易就會出錯。解答函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時一定要注意,一個函數(shù)的導(dǎo)函數(shù)在某個區(qū)間上單調(diào)遞增(減)的充要條件是這個函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
第八、導(dǎo)數(shù)與極值關(guān)系不清考生在使用導(dǎo)數(shù)求函數(shù)極值類問題時,容易出現(xiàn)的錯誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),卻沒有對這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn),往往就會出錯,出錯原因就是考生對導(dǎo)數(shù)與極值關(guān)系沒搞清楚。可導(dǎo)函數(shù)在一個點(diǎn)處的導(dǎo)函數(shù)值為零只是這個函數(shù)在此點(diǎn)處取到極值的必要條件,小編在此提醒廣大考生,在使用導(dǎo)數(shù)求函數(shù)極值時,一定要對極值點(diǎn)進(jìn)行仔細(xì)檢查。
【考研導(dǎo)數(shù)的重難點(diǎn)】相關(guān)文章:
考研計(jì)劃10-19
考研的感悟11-20
考研準(zhǔn)備計(jì)劃 考研計(jì)劃書02-07
考研勵志文案01-19
考研的勵志說說02-06
考研加油文案02-26
勵志考研文案03-18
考研復(fù)習(xí)總結(jié)06-24
關(guān)于考研的故事02-21